Local DM contributions for young pulsars

Implications for FRBs

University of Amsterdam, ASTRON

Samayra M. Straal, Liam Connor, and Joeri van Leeuwen

FRB 121102

- **★** Is located in a star-forming region (Kokubo+2017, Bassa+2017)
- **★** In an extreme magneto-ionic environment (Michili+2018), resembles the Galactic center magnetar
- ★ Nearly fully linearly polarised, as young pulsars
- **\star** Local DM contribution ~ 55 225 pc cm⁻³
- ★ Persistent radio source (Marcote+2017), a PWN?

FRB 121102

- ★ Is located in a star-forming region (Kokubo+2017, Bassa+2017)
- **★** In an extreme magneto-ionic environment (Michili+2018), resembles the Galactic center magnetar
- ★ Nearly fully linearly polarised, as young pulsars
- \star Local DM contribution ~ 55 225 pc cm⁻³
- ★ Persistent radio source (Marcote+2017), a PWN?

Is the repeater a young energetic neutron star?

FRBs arising from young neutron stars

- **★** Connor+2016 (arXiv:1505.05535) FRBs from within young supernova remnants
- **+** Piro 2016 (arXiv:1604.04909)

Impact of an expanding SNR shell

- **★ Kashiyama & Murase 2017** (arXiv:1701.04815) Explanation of the persistent radio emission of the repeater \rightarrow PWN
- **Metzger+2017** (arXiv:1701.02370) Host consistent with those for LGRBs and SLSNe —> ms magnetar
- ★ Dai+2017 (arXiv:1702.05831) ms Magnetar in a PWN without an initial SNR
- ★ Cao+2017 (arXiv:1701.05482)

Constraining the age of a magnetar producing FRBs

FRB 2018

Young pulsars

- ★ Reside in a SNR shell (often)
 - consists of ejecta and swept-up material ionised by the reverse shock
 - + shell lives ~ 10^{5-6} years
- ★ High E-dot pulsars ($\gtrsim 10^{36}$ ergs) 'blow' a pulsar wind nebula
 - Relativistic wind existing of e^{+/-} pairs
 - PWN is a turbulent medium

Samayra Straal

Excess dispersion from SNRs/PWNe?

NEW STREET

15 February 2018

Excess dispersion from SNRs/PWNe?

- ★ NE2001 models clumps of extra electrons for SFRs, SNRs
- ★ PWNe are not modeled

- ★ See if PWN/SNR contribute to DM by:
- Comparing observed DM to NE2001 DM
- 2 samples: Associated (SNR/PWN) — Unassociated pulsars

The Handbook of Pulsar astronomy, Lorimer & Kramer

Excess dispersion from SNRs/PWNe?

- ★ Distances from HI-line velocity or parallax translated to expected DM and error
- **★** Errors are not Gaussians, perform Bayesian fit for any excess
- Performed an MCMC fitting using their proper probability density functions

15 February 2018

Parallax — Asymmetric errorbars

HI distances — Tophat with Gaussian drop-off

FRB 2018

Excess dispersion from SNRs/PWNe

Samayra Straal

Straal et al. submitted

FRB 2018

SNR and PWN contribution to DM

- ★ DM excess of 21.1±10.6 pc cm⁻³
- **\star** SNR after t = 10³ years adds ~3 pc cm⁻³

$$n_{\mathrm{e}} = f_i \, rac{3 \mathrm{M_{ej}}}{4 \pi \mathrm{r}^3 \mu_{\mathrm{e}} \mathrm{m_p}} \, \mathrm{cm}^{-3}$$

 Doppler boosted PWN (Cao+2017) adds for mean of sample ~11 pc cm⁻³

$$\mathrm{DM}_W = 6 \times \left(\frac{B}{10^{13}\,\mathrm{G}}\right)^{4/3} \left(\frac{P}{100\,\mathrm{ms}}\right)^{-11/3} \left(\frac{\kappa}{10^4}\right)^{2/3}\,\mathrm{pc\,cm^{-3}}$$

c. NRAO

15 February 2018

Age-correlation of DM excess

DM contribution in a young system

DM — Scattering relation

- **★** FRBs tend to be under-scattered
- Overly dispersed?
- ★ 2 PWN pulsars also under-scattered
- ★ Are all PWN pulsars under-scattered overly-dispersed?

Samayra Straal

FRB 2018

Summary

- ★ Young pulsars show
 - Large fraction linear polarisation (as does FRB 121102, Michilli+2018)
 - DM excess = 21.1 \pm 10.6 pc cm⁻³ with mediate age of ~10⁴ years
- \star For FRBs can contribute ~300 pc cm⁻³ in early years
- **★** Investigate scattering properties of nebulae
- **★** Study FRB hosts, dwarf galaxies home to SLSNe
- ★ Find younger Galactic sources to study and understand emission mechanism

Piro 2016

FRB 2018

Murase+2016

Samayra Straal

FRB 2018

15 February 2018

Metzger+2017

Samayra Straal

FRB 2018

15 February 2018