

不

How Big is the Universe?

James Allison University of Sydney

muh

How far away are objects in the sky?

How big is the Universe?

How fast is the Universe expanding?

How Big is Big?

Most scientists use metres, but for astronomers this is just too many zeros to write down!

The nearest star is 40,000,000,000,000,000 metres

> The Astronomical Unit = Between the Earth and the Sun or 149,597,870,700 metres

The Light-year

>The Light-year = The distance travelled by light in one year or 9,460,730,472,580,800 metres

The nearest star

So we would normally say ... The nearest star is 4.2 Lyrs away

Proxima Centauri

So we would normally say ... The nearest galaxy of stars is 2.6 million Lyrs away

The Andromeda Galaxy

Measuring distance

How do we measure 1AU?

Distance to the Sun

The distance to the Sun can be measured using the transit of Venus

A transit is where the planet moves across the Sun

We can measure this at different places on Earth

Measuring distance

How far away are the nearest stars?

- Some stars are closer than others
- As we orbit the Sun the nearest stars appear to
- move around in front of
- the others
- How much they move
- depends on their distance

Distance to the galaxies

What about further stars, and even other galaxies?

The brightness of an object depends on how far away it is

So we can use their brightness to measure their distance

Standard Candles

Standard Candles

Supernovae are Standard Candles

Supernovae

Supernovae are seen in our galaxy and in other galaxies that are millions of light years away

Sombrero Galaxy – 30 million Lyrs

Each method of measuring distance builds on the last one

The Earth-Sun distance is used for Parallax

Parallax is used for the Supernovae

The Cosmic Ladder

As we look further away we see larger objects

First stars, then other galaxies, and finally giant groups of galaxies

If we look far enough away see start to see the largest structures in the Universe

The largest objects

>It takes time for the light to reach us

So everything we see in the Universe is really a picture from some time ago

The greater the distance, the longer ago we are seeing the object

Time and distance

The Moon is 1.282 seconds

The Sun is 8 minutes

The centre of our Galaxy is 27,200 years

How far back?

How far back can we go?

In the 1960s Cosmic Microwave radiation was discovered

This radiation is seen in all directionsThere is some even in your TV set!

We are actually seeing the oldest light in the Universe

- This was created in the Big Bang
- A picture of the beginning

This radiation tells Cosmologists how old, and so how big the Universe is

The Universe is 13 billion years old

The Sun and Earth are 4.5 billion years old

The Universe is expanding

Hubble's observations of "island universes" in the 1930s

The Universe is expanding

- The Universe is expanding
- Galaxies are moving away from us and each other
- The further away they are the faster they are moving

The Big Picture

