

Radio Astronomy and the lonosphere

John A Kennewell, Mike Terkildsen

CAASTRO EoR Global Signal Workshop

November 2012

THE IONOSPHERE

- UPPER ATMOSPHERIC PLASMA
 - The ionosphere is a weak (1%) variable plasma
 - It exists from about 80 to 1000 km altitude
 - Peak ionisation @ 300 km $(10^{10} 10^{13} \text{ e}^{-}/\text{m}^{3})$
- VARIABILITY
 - controlled by solar EUV / X-ray flux
 - strongly influenced by the magnetosphere
- DISTURBANCES
 - geomagnetic and solar
 - dynamic interactions with neutral atmosphere

THE IONOSPHERE

FORMATION OF THE IONOSPHERE

Australian Government

Bureau of Meteorology

IONOSPHERIC EFFECTS ON RADIO ASTRONOMY

- FIRST ORDER EFFECT
 - Plasma opacity
- SECOND ORDER EFFECTS
 - Refraction
 - Dispersion
 - Faraday Rotation
- THIRD ORDER EFFECTS
 - Scintillations
 - Decoherence
 - Variable refraction
 - Phase stability
- FOURTH ORDER EFFECTS
 - Emission / Radiation

FIRST ORDER EFFECT

- PLASMA OPACITY
 - plasma is opaque to radio waves below fc
 - fc = 9 \sqrt{Ne}
 - typical ionosphere $10^{10} < Ne < 10^{13} \text{ el/m}^3$
- AFFECTED FREQUENCIES
 - fc at zenith (typically 10 MHz max at MRO)
 - up to 5 fc at lower elevation (~ 50 MHz max)
- RADIO ASTRONOMY FIELDS
 - low frequency solar
 - transients in interplanetary medium
 - jovian
 - EoR if z > 30

FIRST ORDER EFFECT - GRAPHICS

Minimum ionosphere

Maximum ionosphere

Ionospheric sky transparency at Murchison Radio Observatory

SECOND ORDER EFFECTS - QUIET IONOSPHERE

- REFRACTION
 - position changes / uncertainties
 - typically 1.5' at 100 MHz
- DISPERSION
 - pulse delay
 - typically 1.5 $_{\mu}\text{sec}$ at 100 MHz
 - may be significant below 1 GHz
- FARADAY ROTATION
 - polarisation change
 - typically 10 radians at 100 MHz

THIRD ORDER EFFECTS - DISTURBED IONOSPHERE

- SCINTILLATIONS
 - image degradation
- VARIABLE REFRACTION
 - image distortion
- PHASE STABILITY
 - positional changes, decorrelation
- DECOHERENCE
 - long baseline effects (VLBI)

Significant effects for f<1 GHz Very significant for f<100MHz Fortunately at MRO (mid-latitudes) disturbances are generally small

FOURTH ORDER EFFECTS

- PLASMA RADIATION / EMISSION
 - the ionosphere is a hot plasma (~ 1500 K)
 - any emission is extremely small
 - however may be significant for EoR measurements (looking for a 25 mK change)

TYPICAL IONOSPHERIC CHANGES IN RA MEASURES

Quantity	Typical value	Frequency Dependence
	@ 100MHz	
Refraction	1.5 arcminutes	1/f ²
Polarisation	10 radians	1/f ²
Phase change	1000 radians	1/f
Path length	500 metres	1/f ²
Absorption	0.01 dB	1/f ²

COLUMNAR ELECTRON DENSITY UNITS

- SI UNIT
 - the SI unit of columnar electron density is electrons/m²
- IONOSPHERIC UNIT
 - this is the TECU or 'total electron content unit'
 - 1 TECU = 10^{16} electrons/m²
- THE RADIO ASTRONOMY UNIT
 - the DM or Dispersion Measure in parsecs/cm³
 - 1 DM (parsecs/cm³) ~ 3 x 10^{22} electrons/m²

~ 3 million TECU

- Interstellar DM for pulsars 10's to 100's
- IONOSPHERIC TEC RANGE
 - VTEC from 1 to 100 TECU
 - STEC may go to 500 TECU
 - Ionospheric DM usually insiginificant

IONOSPHERIC TEC VARIATION

ROTATION MEASURE UNITS

- In Radio Astronomy rotation measure RM is measured in units of rad m⁻².
- Ionospheric RM ~ 1 rad m⁻²
- Most RA sources have RM's much larger than the typical ionospheric RM

SCINTILLATION COMPARISON

Ground-based radio astronomy observes three different scintillation sources:

Region	Timescale	Critical Source Size
lonosphere	30 seconds	< 10'
Interplanetary (IPM)	1 second	< 2"
Interstellar (ISM & IGM)	Days, months, years	? (only GHz signals?)

The table above refers to a frequency of 100 MHz.

IONOSPHERIC SCINTILLATION

 $(S_4)^2 = (\langle |^2 \rangle - \langle |^2 \rangle) / \langle |^2 \rangle^2$

 S_4 is the square root of the normalised variance of the signal intensity

S4 scintillation index for worst case conditions - very high sunspot number and severe geomagnetic storm in progress.

EXTREME EXAMPLES

• Although ionospheric plasma adds negligible dispersion to pulsar signals, the dispersion of very narrow pulses (eg 1 ns) expected to result from neutrino impact on the lunar regolith is very significant.

• Although we would not expect the ionosphere to effect transionospheric signals at 24 GHz, it is in fact now the largest source of error (~1cm) in highly accurate VLBI.

EPOCH OF REIONISATION

- Looking for an extremely small spectral change (~ 25 mK) in a sky temperature of 100's to 1000's K (latter when f < 100 MHz)
- We really do not know how the ionosphere will effect this measurement
- Inhomogeneitieis across the sky (these will vary with time and may average out?)
- Even the very small emission from a hot plasma may be important?

IONOSPHERIC SUPPORT FOR RA

CLIMATOLOGY

- to allow project planning

ARCHIVE DATABASE

- values of TEC (GPS-derived) and S4
- quick look ionospheric maps and detailed time series (post processed and near real time)
- help in assessing data quality
- help in data reduction/analysis

DEDICATED SUPPORT

- for specific projects
- eg LUNASKA, high accuracy VLBI

http://www.ips.gov.au/Satellite

