

High Speed Digital Signal Processing - the Bedlam Board

Paul Roberts – CASS Engineering Development Group

EoR Workshop November 2012

Introduction

- Background on the Bedlam System
 - Developed for a lunar Cherenkov experiment at Parkes
 - Influenced design choices and peripherals
 - General purpose enough for many applications
 - Used in several observation and measurement applications including EoR
 - Representative of typical DSP backend available for EoR experiments

Bedlam DSP Board

Bedlam Key Specifications

- 8 input channels at 512 MHz bandwidth
 - 4 input channels 1024 MHz bandwidth
- 2 x EV8AQ160 8-bit quad channel 1.25 GHz ADC
- RF input bandwidth DC-2GHz (-3dB)
- 4 x XC5VSX95T DSP oriented FPGAs
- 1 x XC5VLX30T I/O FPGA
- Simple parallel control/data interface to external PCI card
- Dual 1 Gbit optical SFP ethernet interface
- Add on mezzanine interface to 16 x 3.75 Gbit/s transceivers per DSP FPGA (10 GbE CX4 etc)
- Power 75W @ 12V DC or AC

Bedlam System Schematic

DSP Resources per SX95 (4 off)

SLICES (4 LUTs 4 FFs)	14,720
RAM	8784 kbit
MULTIPLIERS (25x18)	640
3.65 Gbit/s Serial I/O	16
Ethernet MAC	4

Example 2 input 4096 channel DFB auto/cross correlator (2 auto / 1 cross with 64 bit accumulators)

SLICES (67%) MEMORY (81%) MULTIPLIERS (37%)

Typical Operation Modes

Transient Mode

Spectrometer/Correlator Mode

Several reference designs

Features

Attractive features

Simple standalone instrument – 2U Rack case

Easy to understand and use

Simple to manufacture

Reference designs available

Can use open source (CASPER) high-level DSP blocks for easy adoption and customization

Limitations

No external memory on board

Applications

High Energy Particle detection via radio Cherenkov emission - Ekers et al

Parkes 21cm Multibeam Experiment

Parkes: RFI pulse

Parkes: Possible Event

Applications – Spectral RFI Monitoring

4096 Channel DFB Spectrometer - Band 800-1000MHz

Applications - Precision system testing ASKAP RFoF link stability

Applications - Precision system testing ASKAP RFoF link stability

Applications - Precision system testing ASKAP RFoF link stability

Applications-Transient RFI Monitoring and Mitigation

Applications-Transient RFI decoding – Aircraft Tracking

Use in cross-correlation

Question of input coupling in cross-correlation mode

ADC has inter-channel isolation typically -57 db from datasheet

- \Rightarrow Voltage coupling ~ 0.001
- \Rightarrow Correlator muliplies voltages

Compare with other uwave components in coupled signal chain

Include in model and/or Use phase switching to reduce

Current developments

EoR – other talk

- **BIGHORNS**
- Self-Calibrating receiver –Keith's talk

Short pulse calibration methods -Nipanjana broadband pulses can be gated out simple identification of discontinuities unambiguous time/phase

other uses-

direct ionospheric dispersion (TEC) measurement etc ?

Pulse calibration

Pulse calibration – making pulses

Pulse width : 350 ps

Pulse amplitude 400 mV into 50 ohm.

Pulse calibration – making pulses

Pulse amplitude 700V into 50 ohm (10kW).

Pulse rise time 950 ps

Real-time digital signal processing can help solve many of the problems encountered in EoR experiment design

Cheap, easy to use hardware platforms exist.

Should be fully exploited

CASS Engineering Development Group

Dr. Paul Roberts

Phone: 61 2 9372 4365 Email: paul.roberts@csiro.au Web: www.csiro.au/org/cass

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

