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EDGES — “2” Calibration

In the Field:

Broadband compact dipoles refl. <10 dB, 50 — 100 and 100 — 200 MHz
with separate antennas

3-position switched spectra from antenna, load, and load plus noise from
diode for calibration and bandpass subtraction. S11 measurement of
antenna (during installation) and ambient temperature measurements.

In the Lab:

Ancillary 3-position switched spectra from ambient and hot loads for
calibration of noise diode. In addition spectra are taken of an open cable
for measurement of LNA noise waves.

Ancillary S11 measurements of ambient and hot loads, LNA input and
open cable used for noise wave measurements.

Measurement are done at 2 temperatures for the derivation of
temperature coefficients.

Lab performance verification using “antenna simulator”



Additional calibration steps required

« Estimate antenna and balun ohmic loss and ground
losses using EM simulation

« Measure change of antenna S11 with temperature
to derive temperature coefficient. (New antenna
design uses materials with low coefficients of
expansion and change of dielectric constant).

For EOR

« Correct for antenna beamshape changes vs
frequency using EM simulation and sky model

 Fit for ionosphere



Antenna to Low Noise Amplifier mismatch

ref. plane

LNA = ANTENNA

M=er,

Compensating for the antenna mismatch

Tory(1 = |T?) = Tory (1 — [Ta|?) | F'|?
where I is the reflection from the LNA
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LNA noise waves reflected back from antenna
(Teky)2(1-T41%)V2|F|

antenna correlated noi:se LNA
uncorrelated ngise

Ty
LNA noise waves: 2"d stage noise

Trec — Sﬁcy(]- — |Pu‘2)|F|2 +TH‘FG‘E|F‘2
+ (Tecos(¢) + Tsin(@))|Tal|F| + Tt

T, is the uncorrelated wave

T.cos(¢) and Tssin(¢) are the correlated
portions which depend on the phase, ¢, of
the reflected wave.

¢ is the phase of ', F

1o 1s the "second stage noise”.



3 — position switching — antenna, load, cal to
take out “bandpass” and set temperature scale

Pant = QTrec

Proad = g(GTamp + To)

FPrat = 9(G(Tomp + Tear) + 1o)

where g is the receiver gain and G is
G=1-|I?

T'amb is the ambient temperature and T,y

calibration noise

The calibrated receiver output, 75y, is

TEp _ Tca.I(P ant — R!m.d) + Tamb

(Pcal - P)Emw!)
Ty (1~ [Taf2)| PG
Tu|T.)*|F|*’G~1
(T,cos(¢) + Tesin(@))|Tu||F|G™




Removing LNA noise waves — correcting for
mismatch, antenna and balun loss

The calibrated sky noise is given by:

Tﬁky — [T3P_Tu|ra‘2‘F‘EG_l
—  (T.cos(¢) + Tysin(¢))|Te|| F|G™]
x (1= L) FIPGT

Tcsif:y — (Tusﬁcy - Tamb(L — 1))/L

where 1.4, is corrected for antenna loss

plus balun loss, L = 107/, The balun

loss 1s

I _ Re(Za)|Zs |
(Re(Za)\ 21 P+ Re(Z7)Zal")

where Z, is the antenna impedance
corrected for the ferrite impedance, Z;.




First “Field Test” of absolute
calibration

Rogers, A.E.E., Bowman, J.D., 2012
"Absolute calibration of a wideband
antenna and spectrometer for accurate
sky noise temperature measurements,”
Radio Science, 47, RSOKO06, doi:
10.1029/2011RS004962.
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EDGES-2 test of absolute calibration at West Forks, ME
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Lab testing — work Iin progress

Use an “"antenna simulator” to test the accuracy

Assumes:

* A mismatched load at uniform temperatures is
precisely equivalent to a lossless antenna
observing a uniform sky at the same
temperature

Caveat:

« Corrections have to be made for the non-uniform
temperature of a hot tungsten filament source
(although corrections are small ~ less than 1 K —
see EDGES memo 100)




balun at ambient temperature

Lamp filament of 1670K +/- 30K
estimated from 8.26 fold
increase in tungsten resistance

Simulator of antenna looking at sky
temperature of 1670K +/- 30K



Primary calibration via thermal HOT
load of known temperature

Heated 50 ohm load

Use current and/or temperature probe

Corrections required for high accuracy:

1] S11 measurement vs temperature — as
load changes with temperature

2] Input line loss — plus assumption of
temperature gradient

R. Monsalve



Noise diodes have 1/f noise and

copper tape
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Sources of error from limited
accuracy S11 and antenna loss

For antenna reflection level of -15 dB an
error of 0.01 dB corresponds to 70 mK out

of 1000 K.

For typical noise wave amplitude of 20 K
and antenna reflection of -15 dB an error
of 0.1 degree in S11 phase corresponds to

10 mK.

An error of 0.1% in antenna/balun loss
corresponds to 300 mK



S11 accuracy improvements

Largest source of VNA error below 200 MHz is the
assumption that the calibration load is exactly 50
ohms in the SOL cal procedure

Fix is to make accurate DC resistance
measurements of the calibration load and make
corrections

Level of better than 0.01 dB can be achieved

Paper in preparation by Raul Monsalve of ASU



Estimates of the sources
of error and their
magnitude expressed as
the residuals to fits with
increased numbers of
parameters along with the
bias in EOR estimation

Parameters of 10 parameter
solution:

1] EoR signature (30 mK, 50@145MHz)
2] scale (assumes spectral index of -2.5)
3] constant (ground emission)

4] frequency "2 (ionosphere emission)

5] frequency #3 (ionosphere absorption)
6] Magnitude of antenna S11

7] Magnitude of LNA S11

8] S11 phase error

9] S11 delay error

10] temperature scale

Estimate of errors using simulations — for more details see EDGES memo 99



Development of new antenna with very low loss Roberts balun

Equivalent circuit of Roberts balun Mechanical details

0
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S11 of

antenna \
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Prototype of antenna under deve'opment Roberts balun also results in Iarger bandwidth



CONCLUSIONS

* A smooth broadband response has been
sufficient to start setting some limits on the
red-shifted 21cm line in the early universe

* Absolute calibration presents extreme
challenges to be able to reach the 10
millikelvin level but much will be learned
along the way and development will be
beneficial for other projects
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