Global 21cm Experiments: A Designer's Guide

Based on AL, Pritchard, Tegmark, Loeb (arXiv: 1211.3743)

CAASTRO, 21st November 2012 Adrian Liu

The Vision for Global Signal Measurements

Take-home messages

- Spectral-only foreground subtraction methods are insufficient.
- Better spectra from finer angular resolution: using spatial information reduces foreground residual errors.
- Using angular information allows high significance detections of both the Dark Ages and Reionization.

Spectral-only methods

A model of the foregrounds

A data analysis algorithm

The Global Sky Model is a good start...

Image credit: de Oliveira-Costa et. al. 2008

... but it needs to be supplemented

A model of the foregrounds

A data analysis algorithm

Minimizing the variance tells us to subtract off a best-guess model but to do nothing more

Spectral-only methods cannot provide safeguards against errors in the foreground model because they do not possess redundancy

Pritchard & Loeb, Nature, 468, 722 (2010)

The performance of spectralonly methods

 $(s^{t}\Sigma^{-1}s)^{1/2} \sim 14$

Surprising that it works so well!

Surprising that it works so well!

The high statistical significance comes from a small handful of modes

The modes that cannot be measured are the smooth foreground contaminated ones

Mission Accomplished?

Take-home messages

- Spectral-only foreground subtraction methods are insufficient.
- Better spectra from finer angular resolution: using spatial information reduces foreground residual errors.

Angular resolution can break degeneracies between cosmological signal and foregrounds

Cosmological Signal

Foreground contaminants

An analogy: To get the angular dependence of the CMB, we exploit redundancy in frequency

Image credit: WMAP Team

Image credit: COBE Team

An analogy: To get the angular dependence of the CMB, we exploit redundancy in frequency

Image credit: WMAP Team

Image credit: Powerpoint

An analogy: To get the frequency dependence of the global signal, we exploit angular redundancy

Despite our ultimate goal of measuring the monopole, angular resolution is necessary.

The details of angular foreground mitigation

- Downweight or discard heavily contaminated regions.
- Use spatial correlations to remove foregrounds

The minimum variance recipe with angular information

- Divide the measured map by one factor of the foreground model.
- 2. Switch to spherical harmonic and spectral eigenmode basis.
- 3. Weight each spatial and spectral scale.
- 4. Switch back to original basis.
- 5. Divide by one more factor of model.
- 6. Sum over all pixels to form a spectrum.
- 7. Renormalize spectrum.

Downweighting reduces error bars by about a factor of two

Taking advantage of spatial correlations further reduces errors

A 100hr integration gives a 25σ detection

Errors also average down faster

With no angular info, integration time goes into measuring a few modes better

Using angular information allows more modes to be integrated down

Improving foreground models will help, but improvements may saturate

Improving foreground models will help, but improvements may saturate

Take-home messages

- Spectral-only foreground subtraction methods are insufficient.
- Better spectra from finer angular resolution: using spatial information reduces foreground residual errors.
- Using angular information allows high significance detections of both the Dark Ages and Reionization.

Gradual reionization is difficult to detect without angular resolution

Using angular information allows extended reionization to be detected

Better spectra from finer angular resolution

"Global 21cm Experiments: A Designer's Guide" arXiv: 1211.3743 AL, Pritchard, Tegmark, Loeb