#### The Current State of Global Signal Theory



Pritchard & Loeb, Nature, 468, 722 (2010)

#### CAASTRO, 19<sup>th</sup> November 2012 Adrian Liu

Recent theoretical developments do not change the basic picture





## $T_{b} = 27x_{H} \left( \frac{T_{S} - T_{\gamma}}{T_{S}} \right) \left( \frac{1 + z}{10} \right)^{1/2} \text{mK}$ Did we get this right?



## Phase I: No Signal



- Residual electrons drive  $T_{\rm gas}$  to  $T_{\rm CMB}$  via Compton scattering
- Collisions drive  $T_{gas}$  to  $T_{spin}$

## NO SIGNAL

## Phase II: Absorption Signal



- Collisions maintain  $T_{gas}$  and  $T_{spin}$  equilibrium
- CMB has become too dilute for  $T_{CMB}$  and  $T_{gas}$  coupling

• 
$$T_{spin} = T_{gas} \sim a^{-2}$$
 while  $T_{CMB} \sim a^{-1}$ 

### ABSORPTION

### Phase III: Back to nothing



- Gas becomes too dilute for collisions to keep  $T_{gas}$  and  $T_{spin}$  in equilibrium



## Phase III: Back to nothing



- Gas becomes too dilute for collisions to keep  $T_{gas}$  and  $T_{spin}$  in equilibrium
- Absorp./emission of 21cm photons makes  $T_{spin} = T_{CMB}$

## NO SIGNAL

### Phase IV: First stars/galaxies form



• First stars create Lya photons, causes coupling between  $T_{gas}$  and  $T_{spin}$  via Wouthuysen-Field effect



### Phase IV: First stars/galaxies form



- First stars create Lya photons, causes coupling between  $T_{gas}$  and  $T_{spin}$  via Wouthuysen-Field effect
- $T_{spin} = T_{gas} < T_{CMB}$ , so...

ABSORPTION

### Phase V: X-ray reheating



- X-rays from early AGNs heat the IGM, raising  $T_{gas}$
- Electrons are now going insane in atoms, giving off all sorts of photons causing  $T_{spin} = T_{gas} > T_{CMB}$

#### EMISSION

#### Phase VI: Reionization



• Eventually, reionization rids us of all neutral hydrogen atoms.

## NO MORE SIGNAL



Nightmare scenario: might the absorption feature vanish with better modeling?





- 1. IGM physics may cause T<sub>gas</sub> to deviate from adiabatic cooling.
- 2. X-ray heating may prematurely raise  $T_{spin}$ .



1. IGM physics may cause  $T_{gas}$  to deviate from adiabatic cooling.

2. X-ray heating may prematurely raise  $T_{spin}$ .

## Supersonic flows could shock-heat the IGM at high redshifts

Supersonic flows could shock-heat the IGM at high redshifts

- Tseliakovich & Hirata (2010):
  - Relative velocity of baryons and dark matter supersonic after recombination.
  - Coherent flows of order v ~ 30 km/s on Mpc scales.
- McQuinn & O'Leary (2012):
  - At z ~20, a 0.3 km/s flow was supersonic, so it needs to be considered.

# Shock-heating probably won't destroy the global signal trough



McQuinn & O'Leary (2012)

# Shock-heating probably won't destroy the global signal trough



McQuinn & O'Leary (2012)

## Now put in star formation, heating, and feedback as well...



Fialkov et al. (submitted, 2012)



1. IGM physics may cause T<sub>gas</sub> to deviate from adiabatic cooling.

2. X-ray heating may prematurely raise  $T_{spin}$ .

#### Even Xtreme X-rays preserve the trough



## The trough persists even for (most) models with dark matter annihilations



## The trough persists even for (most) models with dark matter annihilations



## Heating rates are typically different for different sources



## The slope of the spectrum may be a useful discriminant



Recent theoretical developments do not change the basic picture, but the considerable uncertainty in theory can result substantial variations.