

Maximizing the Science in the Era of Data-Driven Astronomy

Alessandra Aloisi (Program Manager, STScl Data Management)

"Big Questions" in Astronomy and Astrophysics

- USA National Academy of Sciences published in 2010 the decadal survey of Astronomy and Astrophysics
 - the Astro2010 Survey "New Worlds, New Horizons in Astronomy and Astrophysics" identifies the big science questions in astronomy and astrophysics for the decade 2012-2021
 - prioritizes the investments needed
 - recommends a vital and timely scientific program with a balance of small, medium, and large initiatives on the ground and in space
- "Big Questions" to be answered divided into 3 categories: NEW WORLDS
 - What are planetary systems like?
 - How do Stars and Planets Form?

FUNDAMENTAL PHYSICS

- What happens when stars die?
- What are Black Holes?
- How Can We Detect Gravitational Waves? What Can They Tell Us?
- What are Dark Matter and Dark Energy
- What goes on inside Galaxies

COSMIC DAWN

- What Causes Cosmic Inflation?
- What Objects First Lit Up The Universe, and When? How Has The Universe Evolved Over Time?

New Worlds, New Horizons

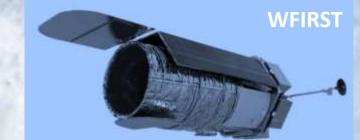
in Astronomy and Astrophysics

Telescopes, Instruments, & Programs recommended by Astro2010

In this decade Astronomers are poised to achieve major advances in answering these questions through access to facilities at the forefront of astronomical research:

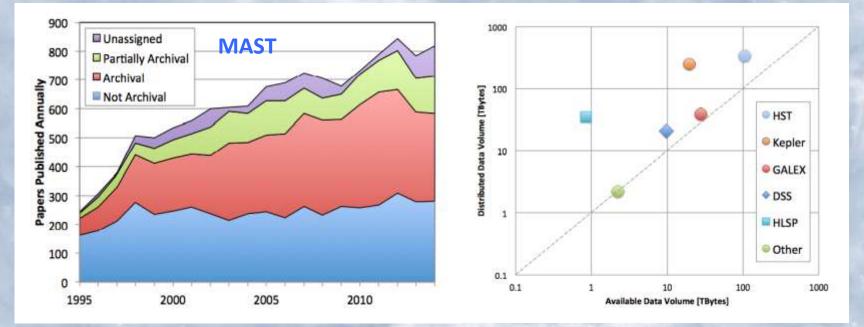
		New Worlds	Fundamental Physics	Cosmic Dawn
	WFIRST	1	1	4
Large Space-Based	SM.MIDEX*		4	×
Facilities	LISA		1	1
	IXO	1	1	1
	LSST		1	
Large Ground-Based	MSI**	1	1	1
Facilities	GSMT	1	1	V
	АСТА		4	4
	CCAT			×
Existing Facilities	ALMA	1		1
DAISting Pacifices	JWST	4		4

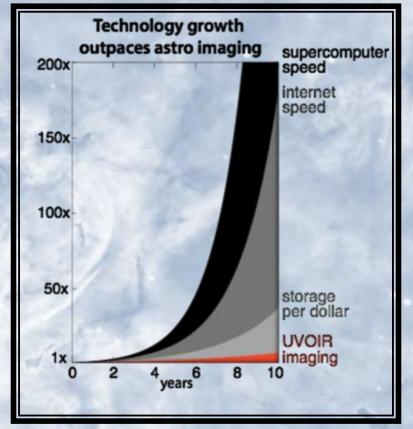
*Additional, new SMEX, MIDEX, and Missions of Opportunity beyond those currently in the NASA pipeline.


** New Mid-Scale Innovations program recommended for NSF.

A New Data-Driven Era in Astronomy

Many of the programs recommended will:

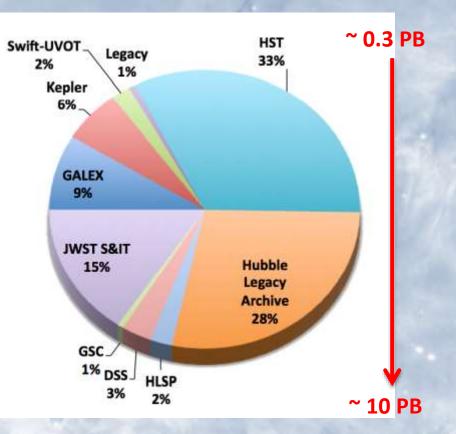

- need to hit the ground running because of the limited lifetime of the project (e.g., JWST)
- create massive databases that will be mined for decades (e.g., LSST, WFIRST)
- Produce complex and high-volume databases requiring special tools (e.g. ALMA)


Value of Archival Science & High-Level Science Products (HLSPs)

- 60% of MAST papers based, in whole or in part, on archival (HST) data!
- Missions with HLSP in MAST (e.g., HST and Kepler) show a distribution in volume ~ 2 mag higher than available data volume.
- Kepler HLSPs are mostly light curves.
- HST HLSPs are mostly products produced by the community (e.g., multi-cycle treasury programs) or HLA (imaging) products.

Archives as new Scientific Opportunity

- Very large and/or highly complex datasets will come on line over the next several years
- Archives will offer an untapped scientific opportunity, particularly when different data collections will be simultaneously available
- Move research from a small-size sample to a full population


Courtesy J.Peek

Challenge: How do we take full advantage of this new Astronomical revolution ?

A. Aloisi - ADASS XXV

MAST Current and Future Data Collections

Mission/ Collection	Data Volume (GB)	Wavelength Range	Data Type	
HST	107,230	0.1 – 2.2µ	l,Sp,sSp	
HLA	90,000	0.1-2.2µ	I,Sp,sSp,Cat	
Kepler/K2	20,066	4350 - 8450 Å	I,Cat,LC	
XMM-OM	47	1500 – 6000 Å	I,Cat	
HLSP	7505	70 Å – 2.2µ	I,Cat,Sp	
SWIFT/UVO	T 6641	1600 - 6000 Å	I,Sp I,SSp,Cat I,Sp,LC Sp	
JWST I&T	51,000	0.6 – 28.5 µm		
GALEX	28,590	1350 – 2800 Å		
EPOCh	51	0.30 – 2.6 µm		
FUSE	1,200	905 – 1187 Å		
IUE	600	1100 – 3200 Å		
EUVE	96	70 – 760 Å	Sp	
ASTRO	57	415 – 3300 Å	I,Sp	
HPOL	0.2	0.32 – 1.05µ	Sp	
ORFEUS	4.6	900 – 1400 Å	Sp	
Copernicus	0.8	900 – 3150 Å	Sp	
GSC2	2,500	4500 – 8500 Å	Cat	
DSS	10,000	4500 – 8500 Å	1	
VLA-FIRST	VLA-FIRST 200 20 cm			
TOTAL:	318.0 TB			

- MAST includes data from active (RED) and legacy (BLACK) missions covering the whole spectral range from FUV to MIR. Non-NASA funded projects are also included (BLUE).
- Data volume of current MAST holdings is ~ 300 TB. This will significantly grow into the PB scale over the next several years due to upcoming new missions that MAST will support.
- JWST data product mission 10-year baseline is ~ 1PB (not including working datasets or HLSP).
- MAST is playing or will be playing a significant role in the following ongoing/future missions: PanSTARRs (~ 2 PB), TESS (~ 20 TB), WFIRST/AFTA (3-9 PB), and GAIA (US-Mirror site; total of 300 TB by 2022).

MAST Discovery Portal

- 1. Unify MAST missions with a common discovery interface.
- 2. Provide instant access to Virtual Observatory collections.
- 3. Build a framework for astronomy data interchange.

Al MAST Observations Podal v1.8	MIDI Exemple	ee: M00, 13:29:56 47:13:	50 rs 1m, More Exer	gries Piendo	a x P	MAS	r seai	rch of M101 Spectra
Roart Page = + NAST: M101 =								AstroView
hipleying 370 of 2696 Total Rows		-	MESSIER 101, red	us: 0.24000*	Pootprints: Ali	- 3-6 -	國陆島	14:04:28.835 +54:27:16.80 RA 0 14:03:12:545 +54:20:56.23 Million
liters -	List of Observation	1						
Dear Filters Edit Faceta Help	Actions	R Preview Cutout	t Mission + D	strument	Filters Waveband	Target Name	Observation ID	
II * Checked () Unchecked () her 44 Secure Fields		E. E.	DE S	WP	Low Disp UV	NGC 5457	swp09442	
Product Type Sort Alphabetically t0 of 2309	• •							° 88
e spectrum (370 of 370) calibration (D of 17)		1	IUE S	WP	Low Disp UV	MUCL NUCLEUS	swp17481	96
Maach Sont Alphabetosily		- May Mary						
HST (324 of 1867) INF (36 of 36) INF (36 of 36) INE (10 of 12) INSE (7 of 7)	° ₽ 0 ₽	EWaldamich	IDE U	WR	Low Disp UV, OPTICAL	NGC5457	Wr04511	
Show 2 more	* 🔡 🧉	a. T	IUE S	WP	Low Disp LIV	NGC5457	swp07422	
Sort Abhubetically (0 of 771) (0 of 462)	• • • •	- Alter descent						
(16 of 323) (5 of 229) (5 of 229) (5 of 229) (5 of 229) (5 of 229)	· * *	Ellen.	105 5	WP	Low Disp. UV	NGC3457	swp05216	⊕

Do not miss T. Donaldson Demo 5 !

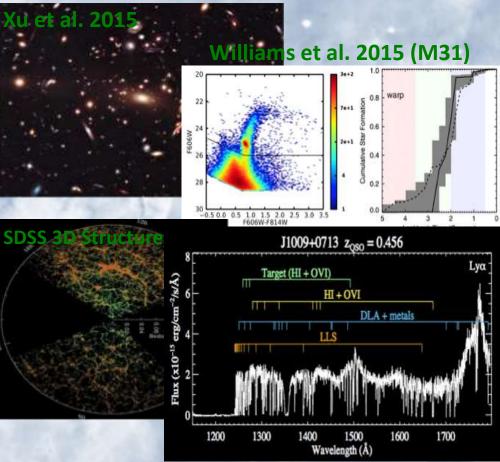
A. Aloisi - ADASS XXV

MAST and the Partner Archives

- Partnerships with other Archives is key:
 - It establishes common data interchange models:
 - CAOM (Common Archive Observation Model)
 - originally created by CADC
 - fully adopted for ingestion of all STScI supported missions into MAST
 - under consideration/implementation at ESAC & IPAC
 - VO standards via the NASA-VO, USA-VO, and IVOA collaborations
 - collaborations

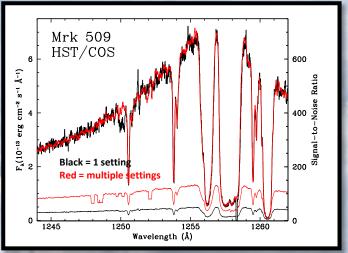
McGlynn poster P071

- Arviset talk 011.3
- It allows for technology exchanges that facilitate data discovery and mining:
 - complex non-positional searches
 - VO registry
 - TAP services
 - Indexing
 - Astrotag project
 - MARC/DOI initiative



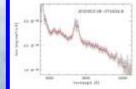
New Science Drivers @ STScl

- STScI is going through process to identify new science opportunities with present and future MAST data holdings
 Postman et al. 2015, White Paper
- Several science cases identified that tap into STScl scientific areas of expertize:
 - 1. Automated Identification of Gravitationally Lensed Galaxies
 - 2. Classification of Amorphous Sources (e.g., star clusters, galaxies, etc.)
 - 3. Resolved Stellar Populations and Star-Formation Histories
 - 4. Mapping the Cosmos in 3D with Multiwavelength Data
 - 5. Black Hole and Host Galaxy Co-Evolution
 - 6. Time-Domain Astronomy
 - 7. Multi-dimensional Exploration of Spectroscopic Datasets

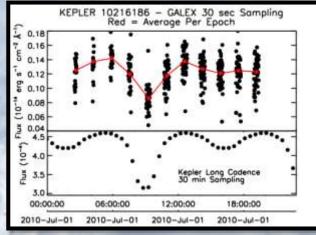

Tumlinson et al. 2013

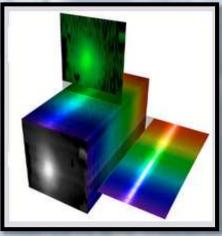
Common Threads Identified

- High-level science products
- Capability to create and execute data analysis processes workflows
- High-performance computing
- Multi-dimensional data visualization tools for data discovery
- Publicly available and/or open source software tools for data reduction and data analysis
- Automated detection/classification/recognition algorithms Liang talk O2.5 Hampton talk O8.3
- Machine learning tools
 Durrent-Whyte talk O1.1


High-Level Science Products @ STScl (1)

- Several ongoing HST projects at STScl to create new HLSPs:
 - HLSPs already exist for HST imaging through HLA
 - Hubble Source Catalog (HSC) v.1 released in Winter 2015 Whitmore talk 013.1
 - HLSPs for HST spectroscopy currently under development and implementation
- HST+JWST+WFIRST working Group at STScI currently investigating new algorithms to perform optimal extraction of grisms (MOS) spectra


Kriss et al. (2011)



High-Level Science Products @ STScl (2)

- Kepler data and HLSPs (light curves) distributed by MAST
- New gPhoton database of GALEX timetagged photon events released to the public in Summer 2015 with software to create light curves, data cubes and images
- JWST will produce HLSPs as part of regular science operations. These include, but are not limited to:
 - Mosaics/dithers
 - Time series/light curves
 - photometric, astrometric, and morphological source catalogs
 - single and multichannel IFU 3D data cubes
 - 2D maps derived from IFU data cubes (e.g., dynamical moment maps of intensity, relative velocity, and line widths)
 - 1D spectral extractions of MSA/grisms and IFU observations and combination of spectra taken with different gratings/channels

Courtesy S. Fleming

IFU Data Cubes

New Scalable Architecture for Multi-Missions Operations

- STScI recently undergone a couple of major upgrades to DMS infrastructure for modernization and added flexibility
 - Single-Sign On (SSO) upgrade
 - It allows users to use STScI SSO Portal credentials to log on to many services throughout the Institute. DMS area was the first one to move to this new STScI service.
 - Once fully implemented, SSO will allow users to only need one user name and password to access all STScI services. Alexov poster P0002
 - Upgrade of data processing and distribution:
 - CDBS reference file system replaced with new CRDS
 - Old OPUS pipeline infrastructure replaced with new Condor/OWL distributed workflow processing and networked storage solutions
 - New workflow allows for easily manageable HST and support/ancillary pipelines
 - Scalable architecture allows for affordability of new missions
 - OTFR replaced with online cache that is updated as needed, e.g., based on availability of new reference files and/or software
 - Data accessible through URL
 - Operational workflow now automatically includes CAOM population and preview creation for view in the MAST portal
 - New data workflow manager will be used for JWST data processing

STScI will adopt new workflow manager for creation of HLSPs !

Computing Resources & Science Cloud

		Compute: HIGH	Compute: HIGH		Colution multi faceted based on employet of date Q
		Data: SMALL	Data: LARGE	•	Solution multi-faceted based on amount of data & compute needs
	(CPUs)	Amazon &		•	Fully-virtualized compute environment called Flexible Data Center (FDC) currently under development at STScl
	Intensity	Microsoft	Partnerships?		FDC will need to accommodate each of the three dimensions in an integrated fashion both for internal and external (MAST) users
		Compute: LOW	Compute: LOW	•	Even after STScI upgrade of both Internet and
	oute	Data: SMALL	Data: LARGE		Internet 2 to 10Gb over the next year or so, bottleneck will still be user bandwidth
	Compute			3	 Implementation of new architectures that enable Astronomer's compute environment to be "close" to the data
		Local	STScl		 Examples of science clouds under implementation include CADC and ESAC
					O'Mullane talk O1.4
	Compute Time Data Size Compute Courtesy D.Liska				Kinney talk 012.1
					Durand talk 012.2
60		Courtesy I	D.Liska		Vinsen talk O12.6

Challenge: How can we provide users with access to Science Cloud Services, including Amazon/Microsoft and Partner Institution Supercomputing Centers ?

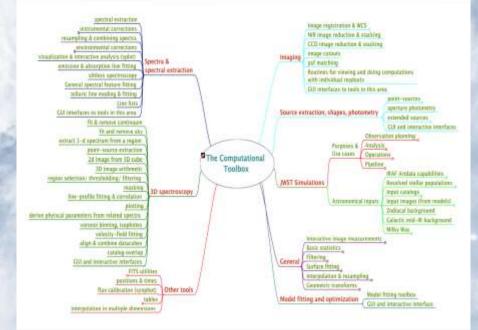
26 October 2015

Multi-Dimensional Data Visualization Tools

- Astronomers need to be able to more easily explore large-volume data
- Can be accomplished by building powerful, flexible, and integrated data visualization tools
- One working example is GLUE:
 - Python framework to link visualizations of multiple related datasets for easy exploration and simultaneous manipulation of data across several files.
 - Developed at Harvard through NASA funding in conjunction with the JWST project at STScl
 - Designed modularly allows astronomers to add their own custom importing, viewing, and manipulation tools
 - At present developed for JWST IFU data to only work on desktop clients and with relatively small data sets

Beaumont et al. 2013

 Could be adapted to a web interface for large datasets


Challenge: How can we adapt a Data Visualization Tool like

GLUE to work on the Web and have scalability ?

A. Aloisi - ADASS XXV

Open-Source Tools for Data Analysis

- STScI is investing in development of Data Analysis tools for JWST:
 - Open source software (Astropy)
 - Easy to install
 - Well documented
 - Easy to extend
 - Multiple interfaces (GUI, command line, & scripting)
 - Built on stable, widely adopted languages (Python and C for speed)
 - Built on stable, widely adopted code libraries
 - Leverage existing codes and algorithms.
- Concept should be extended to include repository of in-house developed and contributed online software accessible to archival users through science cloud

Ferguson et al. (2014)

Robitaille talk O8.1 on Astropy

Data Management Contacts @ STScl

Alessandra Aloisi (DMS Program Manager) Anastasia Alexov (JWST DMS & Archive SSO) Howard Bushouse (JWST Calibration Pipelines) Tom Donaldson (MAST Portal & VO) **Perry Greenfield** (JWST Data Analysis Tools) Mark Kyprianou (JWST DMS) Karen Levay (Archive Sciences Branch) John MacKenty (Grisms WG) Joshua Peek (MARC/DOI) Marc Postman_(Community Mission Office) Jason Tumlinson (HST Spectroscopic Data Products WG) Sarah Weissman (AstroTag) Rick White (MAST) Brad Whitmore (HSC)