

Content of the second second

S. Burke-Spolaor West Virginia University

with Casey Law, Kshitij Aggarwal, Bridget Andersen, Geoffrey Bower, Bryan Butler, Paul Demorest, Joseph Lazio, Michael Rupen

Realfast: **Real**-time **fast** transients on the VLA.

Localization

Eftekhari & Berger (2017)

Galaxies in 6dF redshift survey

credit T. Jerrett

Eftekhari & Berger (2017)

Since last year...

- * 2017 "Axes of awesome":
 - Sensitivity.
 - Localization.
- Now add:
 - Polarization calibration.
 - Voltages for resolving structure.
 - Field of view vs. SEFD trade-off: probe FRB evolution

FRB Detections Per Year

The Very Large Array

Recently upgraded! Continuous bandwidth coverage! Super-fancy!

12-50 GHz: ~1000 h/year but tiny field of view

Signal chain

really realfast with commensal observing

- * More time: 150h/year —> ~3000h/year!
- More sensitivity: larger bandwidth/shorter sampling
- * Required:
 - Changes to VLA CBE pipeline (visibility "spigot").
 - GPU pipeline (currently benchmarking).
 - GPUs and infiniband (Installation in March).
 - Commissioning L, S, C, X; pushing faster.

Realfast Perks

- * Thousands of hours/year, large frequency range.
- Calibration well-understood.
- * Correlation: minimal RFI filtering required!
- Slow sampled data for free.
- * Connection to nearby multi-λ facilities (and shared CHIME sky!).
- Instant localization.

Slow-sampled data for free

Triggered VLITE (350MHz) Detection Simultaneous RAPTOR Optical Image

Realfast: 1.5 GHz VLITE: 350 MHz

Also involved, not shown:

Long Wavelength Array (~100 MHz)

Experiment vs. Facility

- * Typical continuum observations:
 - AGN, supermassive and intermediate-mass black holes
 - Star formation
 - HII regions
 - Molecular clouds
 - * Pulsar timing (sometimes!)
- Open for targeted proposals!!!

Realfast prototype commissioning, Aug 23 2016

Why haven't we found anything (blind)?

What do non-detections tell us?

Assumptions:

- Distance limit < 200 Mpc (Wasserman & Cordes 2016)
- Parkes observed large sky areas (Champion et al. 2017)

Pitfall(s)...

(Lessons from a desperate interferometry crew?)

"Normal Quantile" Plots

e.g. Law et al. (2015)

Blizzards hide the faintest snowflakes.

Experiment	Independent samples per hour	Average time between >8σ <i>thermal noise</i> events
Single dish	1011	8000 hours
Realfast D config	1014	8 hours
Realfast A config	>10 ¹⁵	20 minutes

Lessons

- S/N alone is not necessarily a good measure of significance. Where do we draw the line?
- * Where is YOUR noise floor?
- * Patience...
- (Possibly?) wider FOV would improve bright, rare detections.

Realfast Commensal: The Book

arXiv:1802.03084

REALFAST: REAL-TIME, COMMENSAL FAST TRANSIENT SURVEYS WITH THE VERY LARGE ARRAY

C.J. LAW,¹ G. C. BOWER,² S. BURKE-SPOLAOR,^{3,4,5} B. J. BUTLER,³ P. DEMOREST,³ A. HALLE,¹ S. KHUDIKYAN,⁶ T. J. W. LAZIO,⁶ M. POKORNY,³ J. ROBNETT,³ AND M. RUPEN⁷

¹Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720, USA

²Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A'ohoku Place, Hilo, HI 96720, USA

³National Radio Astronomy Observatory, Socorro, NM 87801, USA

⁴Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA

⁵Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505

⁶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

⁷National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9, Canada

(under review at ApJ Supplements)

Ultimate goals

- * Commensal.
- * Real-time detection. DATA RATES, SELF-TRIGGERING, PROMPT EMISSION.
- * Localization of every FRB detected.
 - * At least 10 by early/mid-2020.
- Public triggers and open data availability.
- (Eventually, hopefully) An open VLA capability supported by NRAO.