

 SkyMapper
 Image: Constraint of the second secon

SkyMapper Transient Program for Fast Radio Bursts

Seo-Won Chang

Christian Wolf, Anais Möller, Christopher A. Onken

FRB2018 conference, 16 Feb

Credit: James Gilbert

Outline

SkyMapper Target-of-Opportunity (ToO) Program for FRBs:

- Common sky with the Oz-based facilities, advantages of wide-fieldof-view and multi-colour filters!
- Email-based triggering mechanism since late 2016
- Automated transient detection pipeline (planned to be upgraded)

Search for associated optical emission of non-repeating FRBs in three ways: 2014 ~ 2017

- Triggered follow-up observations Parkes + Molonglo + DWF
- Coordinated campaigns Parkes + DWF
- Potential shadowing observations with ASKAP?

Multi-wavelength campaigns delivered many key insights, thanks to *repeating* nature of FRB121102

5 h 32 min 12 s 5 h 32 min 0 s 5 h 31 min 48 s 5 h 31 min 36 s Right ascension

> VLA radio counterpart (Chatterjee+ 2017)

Gemini optical counterpart (Irregular, low-metallicity dwarf galaxy, z = 0.192)

When to look for EM counterparts – Two timelines

1.35m SkyMapper at Siding Spring (Wolf+ 2018)

- Common night sky with the Oz-based facilities such as Parkes, Molonglo.
- Limited depth of our single-epoch imaging (e.g., r ~ 21 with 100 sec exposure)
- Widest FoV (5.7 sq. degrees) compared to other facilities + taking six-filter images near simultaneously (20 sec overhead per exposure).

Email-based triggering system (by Dr Fang Yuan)

- Simplified version of VOEVENT notices, enabling a rapid response
 - \rightarrow New alert can be sent to SkyMapper directly with only minutes delay.
- Only need FRB event name (FRBYYMMDD) and its sky position (RA, DEC).
- Find the best observation time for the trigger, and then schedule observing sequence with small random offsets.

Email address: Subject: can be anything, but good to identify as "FRB alert". If "test" shows up in any case anywhere, the alert is considered a test-onl	oper!
Content: should at least have a name (FRB event identifier) and coordinates, e.g. name: FRB160505 J2000 RA: 13:20:43.0 J2000 Dec: -15:22:30.0	only event.

Send an email to SkyMapper not to me if you ready!

"That is exciting! I've cc'd Seo-Won who is managing triggers of FRBs, GW-events, etc. Seo-Won see below, can we trigger SkyMapper? "

Current transient detection pipeline

Mainly developed for discover Type Ia supernovae (Scalzo+ 2017)

Many discovery of SNs or other transients + host galaxies

Need a new transient detection pipeline

- Mainly developed for discover Type Ia supernovae (Scalzo+ 2017), limited by
 - a) Filter sets: prefer to use *gr* bands primarily,
 - b) Pre-defined survey fields: hard to get flexible pointing of the telescope,
 - c) Number of minimum epochs: at least two epochs per field due to lack of reference frames
 - d) Pre-processing issues: no de-fringing was applied to *iz* bands.
 - → Planned to be implemented the Science Data Pipeline of the Main Survey (see Wolf+ 2018) to overcome these issues.
 - → Soon to be get nearly full *ri* reference coverage (> 98%) of southern sky with the SkyMapper Data Release 2 (Mid-2018).

Need a new transient detection pipeline

- Mainly developed for discover Type Ia supernovae (Scalzo+ 2017), limited by
 - a) Filter sets: prefer to use gr bands primarily,
 - b) Pre-defined survey fields: hard to get flexible pointing of the telescope,
 - c) Number of minimum epochs: at least two epochs per field due to lack of reference frames
 - d) Pre-processing issues: no de-fringing was applied to *iz* bands.

Summary of SkyMapper ToO program (2014 ~ 2017)

Previous use of SkyMapper time (hours):

	GWs			FRBs	DWF		other
semester	hours	triggers	hours	ours triggers he		scheduled	hours
2014B	-	-	< 0.1	FRB140514 [4]	-	-	-
2015A	-	-	0.3	1 event	-	-	-
2015B	1.9	GW150914 [1]	3.7	2 events	-	-	-
2016A	-	-	-	-	-	-	-
2016B	-	offline	-	offline	10	(u. analysis) \star	0.3Δ
2017A	2.7	2 events [†]	-	offline	1.1	(u. analysis)o	0
2017B	5.1	GW170817 [2,3	0.6	FRB170827‡	-	offiline	0

 \rightarrow 2018A: 17 hours for Molonglo FRB and DWF runs.

Case 1: Triggered follow-up observations (Parkes + Molonglo FRBs) FRB140514 (DM_{FRB} = 562.7 pc cm⁻³, z < 0.44) - Parkes

- Triggered follow-up at other wavelengths (X-ray to radio) within hours of the event.
- Hα observations 2 and 9 days after the event. No variable objects were seen across the two epochs of data.

2015A/B – Parkes SUPERB project

Made an effort to get first-epoch images within hours of the FRB event
 → Yuan, Schmidt, Wolf (ANU) + Petroff, Keane, van Straten (Swinburne)

2015A	2015B
	27 May – 2 June
	4 – 12, 15-17 June
13-17 Jan	3 – 14 July
22-27 Jan	24 July – 5 Aug
4-11 Feb	10 - 11, 16 -24, 26 – 27 Aug
	2 – 3, 10 - 20 Sep

One delayed FRB trigger from Parkes (not SUPERB), but location is too close to the Sun for SkyMapper follow-up. Two delayed FRB triggers from Parkes. No optical detection of transient. FRB170827 (DM_{FRB} = 176.8 pc cm⁻³, z < 0.12) - Molonglo

Identified three days after the event which limited follow-up at other wavelengths.

- Initial position that we had received: 00:49:18.66, -65:33(:03)
- It is extremely well localised in RA at any given Dec, but there is very poor localization in the Dec direction.
- No particular filter preference

 colour of FRB afterglows is
 anyone's guess.

Follow-up modes and field coverage of SkyMapper

SMT: 2017-08-29
 SMT: 2017-09-01
 6dFGS (All)
 6dFGS (Overlap)

FRB_ellipse (2-sigma)

 Mode 1:
 Centered around the FRB coordinate with dithering (Blue boxes)

> Mode 2: Extending North-South to cover the 2-sigma error regions (black boxes).

Photometric depths and image quality - 100 sec exposures

95% upper limit	u	V	g	r	i	Ζ
SN pipeline	18.1	18.3	20.4	20.2	19.4	18.5
DR 2 (Mid-2018)	19.5	19.5	21.0	21.0	20.0	19.0

1st epoch

2nd epoch

Case 2: Coordinated campaigns (Parkes project P879)

2015 Feb/Mar – FRB live search (1)

- Near-continuous monitoring of two selected fields by SkyMapper to observe concurrently to the Parkes FRB survey → taking snapshots at a cadence of ~20 minutes
- Many multi-messenger facilities were stand-by to receive our radio/optical trigger messages: Swift, Subaru, LCOGT, Liverpool telescope, Keck, Magellan, TNT/ULTRASPEC and PTF.

Expected 1-4 FRBs \rightarrow None

Credit: Sarah B. Spolaor

2015 Aug/Sep – FRB live search (2)

- Selected fields covering the local Sculptor Group of galaxies (~3.9 Mpc).
- Parkes observations (110 hours) were coordinated with continuous SkyMapper observation (cadence limited only by CCD read-out time).
- Test the "sit and stare" vs. blind-based "scan-wide" ideas.

Use 55 SkyMapper fields [Centre coordinate: 00:30:00, -30:00:00]

Credit: Ian Heywood (CSIRO)

Outlook

SkyMapper ToO program for FRBs – We found no evidence of associated optical emissions of non-repeating FRBs so far. Still, significant lag between first radio detection and its related first optical images hampered a complete analysis.

- □ Still remained discoveries Direct FRB counterpart emissions from other wavelengths on timescales immediately preceding and following the FRB detection.
- □ Continued follow-up observations for Molonglo FRBs in 2018, but our role will be limited after the full swing of UTMOST.
- Possibility of coordinated campaign with ASKAP (even though SkyMapper need many pointing) to catch precursor emissions or prompt emissions in the optical regime.