ASKAP instrumentation and future directions

Keith Bannister - Principal Research Engineer CSIRO Astronomy and Space Science

Thanks!

- Andrew Brown (ATNF)
- John Tuthill (ATNF)
- Mike Pilawa (ATNF)
- Aidan Hotan (ATNF)
- Maxim Voronkov (ATNF)
- Mieke Bouwhuis (ATNF/Nikhef)
- Ron Ekers (ATNF)

- Ryan Shannon (ATNF/Curtin/ Swinburne)
- Stefan Oslowski (Swinburne)
- Wael Farah (Swinburne)
- J-P Macquart (Curtin)
- Clancy James (Curtin)
- CAASTRO for the new machine

Overview

- Current capabilities and observations
- Planned capabilities and observations

					Accessibility r
Australia Telescope National Facility				Logout Search	
ATNF Home	About ATNF	Facilities	Science & Technology	Online Resources	Outreach
Basic page Regi	ster of astronomical bets has bee	en updated.			
View Edit					

Register of astronomical bets

Bet		Against	Made when & where		Status
Variance imaging will detect a previously unknown pulsars	Ron Ekers	Simon Johnston		Bottle of wine	
FRBs are real	Paul Groot	Shri Kulkarni		\$1000 USD	Wone. Paid by Shri at B&E 2016
ASKAP 12-antenna Fly's-eye rate will be 4/day	Keith Bannister	Jean-Pierre Macquart	Early 2017	J-P: Bottle of fine red wine KB: Bottle of fine home brew	
Black Holes exist	Kip Thorne	Steven Hawking	1974	Magazine subscriptions	Not yet settled

ASKAP will be...

- 36 antennas
- 36 beams = ~ 30 deg^2 per antenna
- Tuning: 0.7-1.8 GHz
- 336 x 1 MHz channels
- Autocorrelations with ~1ms time resolution
- 10" synthesised beam at 1.4 GHz

ASKAP is... (Feb 2018)

- "Main Array" 16 antennas with all equipment, connected to the correlator
- "Commissioning array" 8 antennas, used for single-dish work only (e.g. CRAFT).
- Total: 36 PAFs on antennas, 24 backends.
- All other parameters as per design

Image: Karen Lee-Waddell RMS: 500 uJy

Capabilities - Feb 2018

Spectra capture to disk

Transfer to Pawsey disk

Offline processing on Galaxy (64 x K20X)

On-site processing hardware

Check CRAFT is commensal

Astronomer-friendly monitoring

Astronomer-friendly control

Rapid response to GCN triggers

Voltage trigger & download

Real-time FRB search Calibration & Imaging pipeline

Real-time public VOEvents

12 antennas/336 MHz/1ms/36 beams polsum/ 8bits

100 MB/sec ~ real time for 12 antennas

36 beams @ 7x real time / GPU

Titan (2x GTX 1070) - 24 antennas real-time Tethys (2 x P100) - 12 antennas real-time

No (!) - work ongoing.

OK - Grafana

No: GNU screen/bash/Python

Planned for March 2018

Firmware available Commissioning Feb-March 2018

Planned for March 2018

Planned for April 2018

Planned for ~ 2019

Software Suite

craft_udpdb	UDP listener and reorder to DADA buffer Configurable buffer size				
craft_dbsplit	Reads DADA buffer and writes to disk Optional rescale to 8 bits Optional polsum Optional split by beam DADA or filterbank format				
FREDDA	FDMT-based dedispersion pipeline (Zackay & Ofek 2014) 7x faster than real time on 36 beams (K20X, ndm=1024) Rescale to mean=0, std=S/N Channel flagging on N=14 moments DM0 flagging on max/min/mean/rms Single time/channel cell flagging on S/N Latency << max DM float32 arithmetic Boxcar sliding window N=132 TODO: incoherent & pol sum, better candidate selection, int8 arithmetic				
Obsman	Watches ASKAP and runs craft_udpdb and craft_dbsplit Generates DADA headers for metadata				
Python	General python plotting and data handling tools				

Fly's-eye observing

RA (J2000)

FRB170107

Fluence=58 Jy.ms

2018/2019 plans

2018	Development	Commissioning array	Main array
Q1	Real-time fly's-eye Voltage dump HW calibration pipeline Real-time incoherent sum GCN response	Virgo offline incoherent GP fly's-eye All-sky fly's-eye GCN response	
Q2	Quicklook pipeline	GP fly's-eye All-sky fly's-eye GCN response	Commensal 16 antennas
Q3	FREDDA S/N improvements DM Window Improvements	Х	Commensal 24 antennas
Q4	Antenna-coherent proof-of concept	X	Commensal 36 antennas DM Window Improved S/N
Q1	VOEvent distribution	Х	Commensal 36 antennas DM Window Improved S/N

Real-time detection and voltage dump

Transient Buffer

- Each beam former FPGA has 2 GB of memory for saving 8 MHz of bandwidth in a ring buffer
- Native resolution is 32 bits (16 bits complex)
- Configurable truncation & rounding down to 16, 8, 2 bits to increase buffer duration (no level setting)
- Configurable number of dual-pol beams: 36 or 1
- Full buffer download time: 96 s @ full rate = 7 Gbps/ antenna = 84 Gbps/12 antennas
- Total Memory: 84 GB per antenna. 1.1 TB per 12 antennas
- Can choose a time range to download, aligned with BAT.
- Dispersion time: 1000 pc/cm^3 = 1.6s assuming band
 2 = 1-1.3 GHz.

Example transient buffer modes

Nbits	Nbeams	Buffer Duration (s)	Download size * (GB)	Time to download ** (min)
32	36	0.9	84	7
16	36	1.8	84	7
8	36	3.6	84	7
2	36	14.2	84	7
32	1	32	3024	252
2	1	512	3024	252

* 1 dual-pol beam, full duration. **Assumes 200 MB/sec disk write speed

FREDDA S/N Improvements

- Barak Zakay is working on a new algorithm to find speckly-FRBs.
- Run standard search at an S/N threshold = 5, then postprocessing to find speckles
- Improves sensitivity by up to 2x

FREDDA S/N Improvements

- Half-sample offsets reduce sensitivity but this can be recovered during dedispersion
- Search over offset improves S/N by sqrt(2) for DM < diagonal (300 pc/cm3)

Improving high DM performance with a DM window

- ASKAP Native resolutions: 1 MHz (coarse filterbank) and 18 kHz (fine filterbank)
- 1 MHz reduces sensitivity to high DMs, but 18 kHz gives us a processing headache.
- Option: Make autocorrelations of fine channels (instead of coarse channels), then sum back to ~1 MHz channels at an intermediate DM.
- Improves the largest DM at the expense of low DMs, keeps data volume the same.
- (Thanks to Jason Hessels for kicking off this thinking, and Alex Dunning for the proposed design!)

DM Window

Tune delays to the centre of the desired DM window

Antenna-coherent upgrade

- Tied array beams for the full FoV is too difficult.
- Fast-dump visibilities (~1 ms) could be produced by the exisiting hardware (TBC)
- Dedispersion/imaging similar to RealFAST.
- Improves sensitivity by 6x = i.e. 10 sigma= 0.6 Jy.
- Currently unfunded. Aim to produce a proof-of-concept end 2018 & propose for funding in 2019.

NVIDIA Titan V: 130 TFlops (!)

Real-time VoEvents

- ASKAP data policy (when full science is runni is that all data products should be made available immediately, after an appropriate quality control period. I.e. no proprietary peric
- For CRAFT this (probably) means we should distribute alerts in real-time.
- We will do this using VOEvents (Petroff et al. arXiv:1710.08155).
- ASKAP will produce different messages with varying latencies, confidences and position uncertainties (similar to SWIFT/Fermi) as yet undefined.
- Plan to do this by the time ASKAP is doing full science - ~ 2019.

Conclusions

- ASKAP has detected 19 FRBs in fly's-eye mode.
- ASKAP FRB collaboration (CRAFT) has been quickly re-energised, with now more than 25 members representing 6 institutes from Australia and around the world
- ASKAP will have a relatively good product of detection rate and localisation.
- ASKAP will distribute real-time triggers and localisations to the world-wide community
- Detection rate & localisation will improve markedly over the next 12-18 months.

