STARE: Fast Radio Bursts in the Local Universe

Christopher Bochenek Shri Kulkarni California Institute of Technology

Purpose

- Search for galactic versions of fast radio bursts (FRBs)
- Investigate the luminosity function of FRBs
 - How far down does the luminosity function extend?
- Perform a census of FRB progenitors within 5 Mpc
- Probe the gap between pulsar giant pulses and FRBs

Fast Radio Bursts

Pietka et al. 2015

The Luminosity of Galactic FRBs

The Luminosity of Galactic FRBs Assume:

• FRBs track stellar mass • FRBs track star formation ORVolumetric Rate $\propto M_{stars}$ Volumetric Rate $\propto SFR$

to infer an FRB rate (L > 4π Jy ms d_{FRB}²) for an individual galaxy ⁶

The Luminosity of Galactic FRBs

- Have: galactic rate of FRBs > 4π Jy ms d_{FRB}^2
- Want: Luminosity of FRB that happens every year
- Extrapolate down the luminosity function until the galactic rate of FRBs is > 1 FRB yr¹

The Repeater

- ~5000 FRBs sky⁻¹ day⁻¹ (Vedantham et al. 2016)
- $d_{FRB} = 817 \text{ Mpc}$
- Volumetric rate = $8 \times 10^5 \text{ FRBs yr}^1 \text{ Gpc}^3$
- FRBs track SFR: 0.02 FRBs yr¹ MW⁻¹
- FRBs track M_{stars} : 0.04 FRBs yr¹ MW⁻¹
- $\frac{dN}{dL} \propto L^{-1.6}$ (Nicholl et al. 2017)
- $L_{yearly FRB} = 0.002 \text{ Jy ms} \text{ Gpc}^2$
- Fluence at 10 kpc: 1.5 MJy ms

What if we change the luminosity function?

The Repeater:

- $\frac{dN}{dL} \propto L^{-1.6} \& d_{FRB} = 817 Mpc$
- Fluence at 10 kpc: 1.5 MJy ms

Some other FRB population:

•
$$\frac{dN}{dL} \propto L^{-2.0} \& d_{FRB} = 817 \text{ Mpc}$$

• Fluence at 10 kpc: 18 MJy ms

Any detection/nondetection is a strong probe of the FRB luminosity function!

How Bright are FRBs are in the Galaxy?

10

A census of nearby FRB progenitors

- We could see a typical 1 Jy ms FRB if it was < 5 Mpc away
- 5000 FRBs sky⁻¹ day⁻¹ = $n_{FRB}V_{olume}r_{epetition rate}$
- Volume ~ 30 Gpc³ (z~0.5)
- Repetition Rate ~ 1/day (From repeater)
- Distance between FRB progenitors: ~110 Mpc
- Constrain:
 - Is the repeater unusually active?
 - What is the number density of FRB progenitors?

Previous Experiment: STARE

- Three crossed dipoles in a cavity
- Operated between 609-613 MHz
- Filtered RFI by coincidence
- Time resolution of 0.125 s
- Detection threshold of 27 kJy
- Only found solar transients

Implementation & Timeline

Design

- Three low gain, large field of view feeds at different locations
- Filter RFI by coincidence
- Detection criteria:
 - Same time
 - Same DM
 - Same RM in all 3 antennas
- Localization to < 30"

Design

- Operates between 1.28-1.53 GHz
- 2048 channels, 122 kHz resolution
- 131 microsecond time resolution
- Field of view: ~1.8 steradians
- SEFD ~7.4 MJy ($T_{sys} = 55$ K)
- S/N = 7.3 for 1 ms pulse \Rightarrow S > 140 kJy

Status

Peryton Detected!

18

Conclusion

• STARE will:

- Search for FRBs in the Milky Way
- Investigate the luminosity function of FRBs
- Catch FRB progenitors in the Local Group
- Probe the gap between pulsar giant pulses and FRBs
- There may be more FRBs in the galaxy than we think!
- Operational by mid-2018