

# **Counting FRBs**

Finding & Understanding Fast Radio Bursts

Ron Ekers and J-P Macquart 15 Feb 2018

CSIRO ASTRONOMY AND SPACE www.csiro.au





# Counting Fast Radio Bursts

International Centre for Radio Astronomy Research

Jean-Pierre Macquart Ron Ekers





THE UNIVERSITY OF WESTERN AUSTRALIA

### Counting AGN the Log N - Log S or source counts

- Why they have been so important (and controversial)
- What can we learn from many decades of research
- The crucial role of the radio luminosity function





### Counting AGN the Log N - Log S or source counts

- Why they have been so important (and controversial)
- What can we learn from many decades of research
- The crucial role of the radio luminosity function





### Counting AGN the Log N - Log S or source counts

- Why they have been so important (and controversial)
- What can we learn from many decades of research
- The crucial role of the radio luminosity function





### Why use source counts – event rates?

- Providing you have a well defined sample you do not need precise knowledge of the distance
- Sample has to have known completeness
- The shape of the rate distribution depends on the evolution of the luminosity function and this is a clue to the progenitor population
- The shape of the rate distribution is crucial for planning new instruments and observing strategy

Coherent (with small FoV) or incoherent (with large FoV)
 FoV v sensitivity

- Use techniques like the maximum likelihood estimators
- Include time (rate and fluence) as well as space curvature terms



### The Radio Luminosity Function and why it matters

FRBs have a very broad luminosity function > 10<sup>4</sup>

> this dominates the statistical properties of the population (not the distance)

- The increasing volume visible at higher luminosity can cancels the decreasing source density – critical luminosity function (von Hoerner (1973)
- There may or may not be a Hubble relation





### Flux density distribution v redshift

showing effect of the luminosity function



Figure 6. The differential redshift and flux density distribution of eq. (30) for a variety of  $\gamma$  indices for  $\alpha = 1$  and for abundance evolution scenarios that scale either (left) linearly or (right) quadratically with the SFR. The plot is normalised by the constant  $F_{\nu}^{-\gamma} D_{H}^{4-2\gamma}$  for plotting purposes.



### **Problems with existing FRB catalogues**

- Discovery bias winners curse
  Should exclude Lorimer
- Beam location uncertainty (because single event)
  Both fluence estimate and search area are wrong
  Statistical correction possible but depends on count slope and beam shape
- Multiple beam detections
  - Strong bias introduced if the catalogue has a mixture of corrected and uncorrected fluences





# Parkes considerations

Parkes event rate hard to interpret

True completeness fluence depends on beam correction

True rate depends on source counts slope:

$$R = \frac{\pi \theta_b^2}{\alpha \log 2} K S^{-\alpha}$$

Macquart & Ekers 2017







- PAF localisation
- V/Vmax = 0.59
- Implies alpha=-2.2.







### **FRB rate counts**

Macquart & Ekers (2018)

- theoretical framework to interpret counts and DM distributions

- Extremely flat luminosity function
- Strong evolution: SFR<sup>2</sup> = (1+z)<sup>5.6</sup>





### **FRB rate counts**

Macquart & Ekers (2018)

- theoretical framework to interpret counts and DM distributions

- Extremely flat luminosity function
- Strong evolution: SFR<sup>2</sup> = (1+z)<sup>5.6</sup>



# **Parkes FRB DM distribution**

Petroff et al 2016: 

full sample >2Jy ms completeness

**Excluding Lorimer** 







CSIRC













### Conclusions

FRBs have a very broad luminosity function

> X 10<sup>4</sup> and this dominates the statistical properties of the population

- The high fluence end of the distribution is most sensitive to evolution and distribution on cosmological scales
  - Strong motivation for large FoV surveys rather then high sensitivity surveys
  - > The statistics for high fluence transients improves with time
    - This is very different to counts of non-transient sources
- There may not be a Hubble relation for FRBs
- The Parkes FRB steep source counts require very strong evolution
  > Eg (star formation rate)<sup>2</sup> or following the AGN (1+z)<sup>6</sup>
- An exponential scattering tail cannot change the broad luminosity function
- FRB DM distributions as a function of fluence is an extremely powerful probe

