An Overview and Update of the Repeating FRB

Laura Spitler Max-Planck-Institut für Radioastronomie, Bonn, Germany

> Melbourne FRB meeting 14 February 2018

European Research Council Established by the European Commission

Overview

- Brief background on FRB 121102 and update on single dish observations
- What can we learn about the system from observing the bursts?
- What can we learn about system from observing its environment?

FRB 121102: the first (and so far only) repeating FRB

Burst

Discovered in archival processing in pulsar survey data (PALFA) from the Arecibo Observatory...

Spitler et al, Nature, 2016

<u>AO Team</u>

Jason Hessels (U van A) Andrew Seymour (NAIC) Daniele Michilli (U van A) Kelly Gourdji (U van A)

Arecibo monitoring of the "repeater"

What can we learn from observing the bursts?

- Radio observations
 - ~200 detections from 1.2 to 9 GHz
 - No detections (simultaneous or otherwise) below 1 GHz
 - Simultaneous, multitelescope detections are rare
 - Highly non-Poissonian detection rate
 - Bursts highly polarized

- Higher energy (optical/X-ray / gamma-ray)
 - No detectable simultaneous bursty emission:
 - Scholz et al. 2017, Hardy et al. 2017

⁽Hessels et al., in prep)

Models for 3D printers developed by Anne Archibald

https://www.thingiverse.com/thing:2723399

Burst component drift rates

Arecibo 5 GHz detections with PUPPI

Bursts 100% linearly polarized

GBT Breakthrough Listen

Vishal Gajjar

4-8 GHz receiver

BL backend with baseband recording

August 2017 21 bursts detected

Observed the source to "turn off"

(I will return to polarization later)

Time (ms)

What can we learn from observing the bursts?

- What we need to explain...
 - Complex time-frequency structure
 - 100% linear polarization and flat and constant polarization angle
 - Perhaps, variable detection rate
- Possibilities:
 - Intrinsic emission mechanism
 - Extrinsic effect, i.e. propagation
 - Some combination of the two

Exception: Periodicity!

Intrinsic process: when in doubt... invoke the Crab pulsar

Crab HF IP GP polarization

Extrinsic process: Plasma Lensing

Known plasma lensing phenomenon:

- Extreme scattering events
- Echos in profile of Crab pulsar

What can we learn by observing the environment?

• Arguably, a lot more...

• (If you want to try to convince me the repeater comes from a different FRB population, show me the environments of "one-off" sources.)

Radio localization

Bursting source: Localized to submilliarcsecond precision

Very Large Array De-dispersed Time Series 300 (C) 딸 ²⁰⁰ Milling W. And RA offset (an RA offset (arcs

Time Offset (s)

SNR

European VLBI Network

Persistent radio source:

Compact (<0.7 pc) Spatially coincident with bursting source

Chatterjee et al, Nature, 2017

Marcote et al., ApJL, 2017

Optical follow-up

Host galaxy: Redshift of 0.193 Low metallicity dwarf

Tendulkar et al, ApJL, 2017

FRB 121102 located in large star formation region

- Host galaxy is a low metallicity dwarf
 - M \star ~ 10⁸ M $_{\odot}$
 - Metallicity: $12 + \log_{10}(O/H) = 8 \pm 0.2$
 - SFR: 0.23 0.4 M∘yr⁻¹
- Persistent+bursting source sitting in a large HII region
- Similar to extreme emission line galaxies (EELGs)

Bassa et al, ApJL, 843, 2017

Two models

The burst source is a young magnetar in an energetic nebula

Credit: NASA/Hubble

The bursting source (neutron star?) is in the vicinity of an intermediate massive black hole

Credit: NASA/Goddard Space Flight Center Conceptual Image Lab

Model scoreboard

	millisecond magnetar (SLSNe/long GRB)	Intermediate mass black hole
Source of luminous bursts		NS in vicinity?
Strong, spatially coherent magnetic field		
Radio luminosity of persistent source		
Location in star formation region		
Host galaxy properties		

Rotation Measure

$$\begin{split} \theta_p &= \frac{c^2}{\nu^2} \mathrm{RM} \\ \mathrm{RM} &= \int_0^D n_e(l) B_{||} dl \\ n_e &= \text{electron density} \quad B_{||} = \text{magnetic field} \\ \text{along the line of sight} \end{split}$$

$$\mathrm{RM}_{\mathrm{source}} = (1+z)^2 \mathrm{RM}_{\mathrm{obs}}$$

 $RM_{source} \sim 145,000 \text{ rad } m^{-2}$ (AO) $RM_{source} \sim 133,000 \text{ rad } m^{-2}$ (GBT)

Explains why the bursts at 1.4 GHz show no polarization.

RM is time variable

$$B_{\parallel} = \left(\frac{\mathrm{RM}_{\mathrm{src}}}{0.81 \,\mathrm{DM}_{\mathrm{host}}}\right) \,\mathrm{mG}$$

 $\label{eq:RMsource} \begin{array}{l} \text{RM}_{\text{source}} \sim 145,000 \ \text{rad} \ \text{m}^{-2} \\ \text{DM}_{\text{host}} = 70 \ \text{-} \ 270 \ \text{pc} \ \text{cm}^{-3} \\ \hline \text{B-field} \sim 0.6 \ \text{-} \ 2.4 \ \text{mG} \end{array}$

We argue that the magnetized plasma local to the source is responsible for the RM is local to the source.

Interesting Galactic analog: Galactic center

Model scoreboard

	millisecond magnetar (SLSNe/long GRB)	Intermediate mass black hole
Source of luminous bursts		NS in vicinity?
Strong, spatially coherent magnetic field	 RMs ~10⁵ rad m⁻² have never been observed from a SNe/PWNe Maybe SLSNe/LGRBs simply different 	Galactic center

Luminosity of persistent radio source

```
FRB 121102: 
 L_{Radio,PS} \sim 10^{38} \text{ erg s}^{-1}
 L_{X-ray,PS} < 10^{41} \text{ erg s}^{-1}
```


Model scoreboard

	millisecond magnetar (SLSNe/long GRB)	Intermediate mass black hole
Source of luminous bursts		NS in vicinity?
Strong, spatially coherent magnetic field	?	
Radio luminosity of persistent source	×	

Host galaxy properties

Low luminosity AGNs are rare in dwarf galaxies

Optically selected (Reines et al 2013): 0.5%

X-ray selected (Mezcua et al 2018): 0.2%; only ~8% had radio emission

Radio / X-ray luminosities don't into the "fundamental plane"

Metzger et al., ApJ, 2017

Model scoreboard

	millisecond magnetar (SLSNe/long GRB)	Intermediate mass black hole
Source of luminous bursts		
Strong, spatially coherent magnetic field	×	
Radio luminosity of persistent source	×	
Location in star formation region		×
Host galaxy properties		×

Conclusions

- The repeating FRB has been an interesting case study in FRB localization
 - We know the source is associated with a compact, persistent radio source in a low-metallicity dwarf galaxy at z=0.193. It is embedded in a region of strong star formation and in an environment similar to the center of our galaxy.
 - Bursts show a complex phenomenology
 - Observing the source's environment did more to narrow down astrophysical models: young neutron star + SNe or NS in the vicinity of a low-luminosity AGN