LOFT-e (Localisation of Fast Transients with e-MERLIN) Charlie Walker

(charles.walker@postgrad.manchester.ac.uk)

R. P. Breton, P. A. Harrison, A. Holloway, M. J. Keith, M. Malenta, M. B. Mickaliger, K. Rajwade, J. Roy, T. W. Scragg, B. W. Stappers

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Talk Motivation

- Understanding FRBs and their hosts, requiring:
- Real-time detection and localisation with interferometers, via:
- Synergies between current facilities and/or identifying opportunities for existing facility upgrades.
- 1) Our facility: e-MERLIN
- 2) Our upgrade: Localisation Of Fast Transients with e-MERLIN (LOFT-e)
- 3) Our results

C. R. H. Walker Finding and Understanding Fast Radio Bursts

• UK-based interferometer

C. R. H. Walker Finding and Understanding Fast Radio Bursts

- UK-based interferometer
- 7 telescopes:
 - Longest baseline: 217 km

C. R. H. Walker Finding and Understanding Fast Radio Bursts

- UK-based interferometer
- 7 telescopes:
 - Longest baseline: 217 km
- 3 receivers:
 - L-band (1.4 GHz), C-band (5 GHz), K-band (22 GHz)

C. R. H. Walker Finding and Understanding Fast Radio Bursts

- UK-based interferometer
- 7 telescopes:
 - Longest baseline: 217 km
- 3 receivers:
 - L-band (1.4 GHz), C-band (5 GHz), K-band (22 GHz)
- L-band:
 - Angular resolution: 150 mas
 - Bandwidth: 512 MHz
 - Hours on sky: 1700 hrs/yr

C. R. H. Walker Finding and Understanding Fast Radio Bursts

JBO + e-MERLIN: Transients

Lovell: Apollo

C. R. H. Walker

- Piggybacks pulsar observations (real-time)
- 400 MHz (1.4 GHz)
- 3.5 years of data processed
- No localisation

e-MERLIN: Follow-up contributions:

- FRB150418 follow-up (Bassa et al., 2015; Giroletti et al., 2016)
- GW170817 follow-up (Abbott et al., 2017)
- Ongoing time to follow up FRBs (Beswick et al., 2017)

(credit: Bassa et al., MNRAS 2016)

Finding and Understanding Fast Radio Bursts

But e-MERLIN could do more...

• Equipment* at our disposal:

*L-band, 25 m dishes

- Good resolution:
 - 215 km baseline:150 mas resolution
- Decent FoV:
 - FWHM: 30 arcminutes
- 6 dishes
 - Combine for increased sensitivity
- 0.004 0.012 FRBs per day
 - (Parkes rate scaled to e-MÉRLIN fluence limit, incoherent beam sensitivity, logN-logS slope of -1)

(credit: Stappers)

...Detect and localise 0.3 - 1 FRBs per 1700 hrs

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Localisation of Fast Transients with e-MERLIN

C. R. H. Walker Finding and Understanding Fast Radio Bursts

LOFT-e: Modes

• Currently working on two different modes for e-MERLIN:

C. R. H. Walker Finding and Understanding Fast Radio Bursts

LOFT-e: Modes

- Currently working on two different modes for e-MERLIN: 1) Real-time
 - Filterbank incoming data (8-bit, 256 channels, 64 microsecond sampling)
 - Mitigate RFI
 - Combine/search for transients
 - Likely candidate? Store raw voltages offline:
 - Correlation, LOCALISATION!

C. R. H. Walker Finding and Understanding Fast Radio Bursts

LOFT-e: Modes

- Currently working on two different modes for e-MERLIN: 1) Real-time
 - Filterbank incoming data (8-bit, 256 channels, 64 microsecond sampling)
 - Mitigate RFI
 - Combine/search for transients
 - Likely candidate? Store raw voltages offline:
 - Correlation, LOCALISATION!
 - 2) Offline
 - The non-commensal high time-resolution e-MERLIN mode
 - Testbed for real-time strategy:
 - Data capture, filterbanking, RFI mitigation, telescope combination via:
 - Observing pulsars, giant pulses, RRATS

C. R. H. Walker Finding and Understanding Fast Radio Bursts

LOFT-e: A high time-resolution backend

Telescope

- Goal: Piggyback standard operations
 - Stream voltage data to machines
 - Filterbank, dedisperse, RFI mitigate, search for transients

LOFT-e: A high time-resolution backend

Correlator

- First steps (2015 e-MERLIN cycle):
 - Establish "always-on" data stream from e-MERLIN correlator:
 - Develop software for data capture/processing

LOFT-e: Signal Path

- e-MERLIN was not originally designed for high time-resolution studies
 - We are working within intrinsic hardware limitations
 - Using VLBI capability to extract data

Station Board

LOFT-e: Signal Path

• e-MERLIN was not originally designed for high time-resolution studies

Baseline Board

- We are working within intrinsic hardware limitations
 - Using VLBI capability to extract data

- Currently excluding Lovell telescope
 - Form incoherent sum from similar telescopes
 - Maximum of 6 dishes

C. R. H. Walker Finding and Understanding Fast Radio Bursts

- 12 available baseline boards
 - Modified EVLA design
 - 1 board: 64 MHz dual-polarisation VDIF data, 128 MB/second

Swinburne 2018

C. R. H. Walker Finding and Understanding Fast Radio Bursts

- 3 LOFT-e nodes
 - Data capture software written in c, python

Per node:

- 32 GB RAM
- GTX980 GPU (x2)
- 6-core 12-thread CPU (x1)
- 28 TB storage

C. R. H. Walker Finding and Understanding Fast Radio Bursts

- Concerning center frequencies, port mapping, etc.
- Subject to current e-MERLIN observations

C. R. H. Walker Finding and Understanding Fast Radio Bursts Swinburne 2018

Per node:

32 GB RAM

GTX980 GPU (x2)

6-core 12-thread CPU (x1)

- Telescope information
 - Source names, on source checks, etc.

Per node:

- 32 GB RAM
- GTX980 GPU (x2)
- 6-core 12-thread CPU (x1)
- 28 TB storage

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Challenges along the way

1) Working with pre-existing technology

- Example: Correlator Auto-Gain Control
 - Automatically rescales data based on current signal
 - If RFI-dominated: 2-bit output data concentrated into a single level **BAD**

Swinburne 2018

• We've turned this off now

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Challenges along the way

1) Working with pre-existing technology

- Example: Correlator Auto-Gain Control
 - Automatically rescales data based on current signal
 - If RFI-dominated: 2-bit output data concentrated into a single level **BAD**
 - We've turned this off now

2) Coherent combination

- Can increase sensitivity further by coherently combining data
 - Began modifying GMRT pipeline
 - Too hardwired for GMRT
 - Potentially looking for help with beamforming

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Challenges along the way

1) Working with pre-existing technology

- Example: Correlator Auto-Gain Control
 - Automatically rescales data based on current signal
 - If RFI-dominated: 2-bit output data concentrated into a single level **BAD**
 - We've turned this off now

2) Coherent combination

- Can increase sensitivity further by coherently combining data
 - Began modifying GMRT pipeline
 - Too hardwired for GMRT
 - Potentially looking for help with beamforming
- 3) RFI (see next slides)

C. R. H. Walker Finding and Understanding Fast Radio Bursts

e-MERLIN at 1.4 GHz

• L-band: 1254.4 MHz - 1766.4 MHz

• Split into 8 available 64 MHz sub bands:

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Finding and Understanding Fast Radio Bursts

C. R. H. Walker

Finding and Understanding Fast Radio Bursts

C. R. H. Walker

Finding and Understanding Fast Radio Bursts

C. R. H. Walker

Results: Combining bands

We can combine data from separate baseline boards:

Details:

- Source: PSR B1933+16
- Sub bands: 1414.4, 1670.4 MHz
- Antenna: Cambridge
- Observation length: 10 minutes

Pulse Profile

Phase vs Frequency

Phase vs Time

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Results: Combining beams

We can combine individual dishes for increased sensitivity:

Details: PSR B0329+54 30 second pulse profile 20 Incoherent beam: S/N 32.325 • Source: PSR B0329+54 Darnhall: S/N 12.375 • Sub bands: 1414.4, 1670.4 MHz Defford: S/N 14.728 ... 15 Pickmere: S/N 21.119 Antennae: Da, De, Kn, Pi Knockin: S/N: 18.464 Observation length: 30 s 10 Testing various incoherent beam techniques: 5 1) Straight sum 2) Median filtering 3) Median clipping _5 L 0.5 0.6 0.7 0.8 0.9 1.0 **Pulse Phase**

C. R. H. Walker

Finding and Understanding Fast Radio Bursts

Results: Single pulses

Single pulse detection provides proof-of-concept for FRBs:

Details:

- Source: Crab Pulsar giant pulse
- Sub band: 1414.4 MHz
- Antennae: Pickmere, Knockin, Darnhall, MkII

Plots:

- Incoherent beam (bottom)
- Individual dishes (2 pols: left, right) (top)

Current method:

- AstroAccelerate
 - GPU-based searching

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Next Result: RRATs

- Granted e-MERLIN time for RRAT observations to test singlepulse pipeline
 - Observed: RRAT 1819-1458
 - Time: ~ 6 hours
 - Antennae: Cambridge, Darnhall, Defford, Knockin, Pickmere
 - To come:
 - 36 hours of dedicated observing time for other RRATs

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Summary

- LOFT-e:
 - A new high time-resolution backend for an existing interferometer
 - Offline mode for development, pulsar science
 - End goal: real-time commensal FRB detections + localisation
- Demonstrated:
 - 1) Combining sub bands increased bandwidth
 - 2) Combining dishes increased sensitivity
 - 3) RFI mitigation
 - 4) Pulsars, giant pulses observed
- Next steps:
 - RRAT observations proposal accepted
 - Fully-fledged FRB pipeline
 - Investigating software correlation

C. R. H. Walker Finding and Understanding Fast Radio Bursts

Summary

- LOFT-e:
 - A new high time-resolution backend for an existing interferometer
 - Offline mode for development, pulsar science
 - End goal: real-time commensal FRB detections + localisation
- Demonstrated:
 - 1) Combining sub bands increased bandwidth
 - 2) Combining dishes increased sensitivity
 - 3) RFI mitigation
 - 4) Pulsars, giant pulses observed
- Next steps:
 - RRAT observations proposal accepted
 - Fully-fledged FRB pipeline
 - Investigating software correlation

C. R. H. Walker Finding and Understanding Fast Radio Bursts